Quantcast
Channel: idle thoughts » Uncategorized
Viewing all articles
Browse latest Browse all 19

Creating fancy images with Matplotlib

$
0
0

I have to give a short presentation at SOSP next week, and for it, I needed to have some nice pictures representing a distributed array. After trying out several tools for trying to create these, I began to lament and cry over the state of Linux drawing software. But that’s a different story. I ended up writing a simple matplotlib script to generate the pictures I needed, and since it worked out pretty well, I thought I’d share it here.

Here’s the kind of picture I’m referring to:

array

It turns out this is pretty straightforward using matplotlib. Here’s the basic function:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
def draw_array(a, target=None):
    fig = pylab.gcf()
    fig.frameon = False
    
    ax = fig.gca()
    #ax.set_axis_off()
    
    ax.patch.set_facecolor('white')
    ax.set_aspect('equal', 'box')
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_locator(plt.NullLocator())
    
    size = 1.0
    z_scale = 1.4
    i = 0
    for z in reversed(range(a.shape[2])):
        for (x,y),v in np.ndenumerate(a[:, :, z]):
            i += 2
            alpha = a['transparency'][x,y,z]
            color = tuple(a['color'][x,y,z])
            off_x = 0.01 + x + size + z / z_scale
            off_y = y + size + z / z_scale
            
            rect = pylab.Rectangle([off_x, off_y], size, size,
                                   facecolor=color, edgecolor=(0,0,0),
                                   zorder = i, alpha = alpha)
            ax.add_patch(rect)
            
            cx = off_x + size/2
            cy = off_y + size/2
            
            # sigh
            label = str(a['name'][x,y,z])
            w, h = pylab.matplotlib.text.TextPath((0,0), label).get_extents().size / 30
            
            #print w, h
            
            text = pylab.Text(cx - w / 2, cy - h / 2, label, zorder=i+1)
            ax.add_artist(text)
    
    ax.autoscale_view()
    if target is not None:
        pylab.savefig(target)
    return ax
def draw_array(a, target=None):
    fig = pylab.gcf()
    fig.frameon = False
    
    ax = fig.gca()
    #ax.set_axis_off()
    
    ax.patch.set_facecolor('white')
    ax.set_aspect('equal', 'box')
    ax.xaxis.set_major_locator(plt.NullLocator())
    ax.yaxis.set_major_locator(plt.NullLocator())
    
    size = 1.0
    z_scale = 1.4
    i = 0
    for z in reversed(range(a.shape[2])):
        for (x,y),v in np.ndenumerate(a[:, :, z]):
            i += 2
            alpha = a['transparency'][x,y,z]
            color = tuple(a['color'][x,y,z])
            off_x = 0.01 + x + size + z / z_scale
            off_y = y + size + z / z_scale
            
            rect = pylab.Rectangle([off_x, off_y], size, size,
                                   facecolor=color, edgecolor=(0,0,0),
                                   zorder = i, alpha = alpha)
            ax.add_patch(rect)
            
            cx = off_x + size/2
            cy = off_y + size/2
            
            # sigh
            label = str(a['name'][x,y,z])
            w, h = pylab.matplotlib.text.TextPath((0,0), label).get_extents().size / 30
            
            #print w, h
            
            text = pylab.Text(cx - w / 2, cy - h / 2, label, zorder=i+1)
            ax.add_artist(text)
    
    ax.autoscale_view()
    if target is not None:
        pylab.savefig(target)
    return ax

The first part of this just turns off the various lines for the axes. We then iterate through the elements of the array and create a Rectangle() for each one; each “layer” (z-axis) is shifted off to the right a little bit from the previous, to give our illusion of depth. (We don’t want a normal perspective projection, as it would hide too much of the deeper layers).

The “sigh” comment is where I’m using a hack to determine the size of the text we’re going to put in so I can center it in the array cell. I couldn’t find an easier way to do this, and no, I don’t know why I have to divide the result by 30.

The input array has 3 fields which specify how to render each rectangle:

1
dtype=([('color', 'f,f,f'), ('name', 'i'), ('transparency', 'f')]))
dtype=([('color', 'f,f,f'), ('name', 'i'), ('transparency', 'f')]))

Now we can construct an arbitrary array and feed it into our function:

1
2
3
4
5
6
7
8
shape = (3,3,5)
a = np.ndarray(shape, dtype=([('color', 'f,f,f'), ('name', 'i'), ('transparency', 'f')]))
a['name'] = np.arange(np.prod(shape)).reshape(shape)
a['transparency'] = 1.0
a['color'] = (1,1,1)
return a
 
draw_array(a, target='array.pdf')
shape = (3,3,5)
a = np.ndarray(shape, dtype=([('color', 'f,f,f'), ('name', 'i'), ('transparency', 'f')]))
a['name'] = np.arange(np.prod(shape)).reshape(shape)
a['transparency'] = 1.0
a['color'] = (1,1,1)
return a

draw_array(a, target='array.pdf')

Once we have the basics out of the way, we can do some fancy rendering really easily. First, let’s make a little helper class to draw slices:

1
2
3
4
5
6
7
8
9
10
class draw_slice(object):
    def __init__(self, a, target=None):
        self.a = a
        self.target = target
    
    def __getitem__(self, slc):
        slice_z = np.copy(self.a)
        slice_z['color'][slc] = (0.9, 0.5, 0.3)
        slice_z['transparency'] = 0.9
        draw_array(slice_z, self.target)
class draw_slice(object):
    def __init__(self, a, target=None):
        self.a = a
        self.target = target
    
    def __getitem__(self, slc):
        slice_z = np.copy(self.a)
        slice_z['color'][slc] = (0.9, 0.5, 0.3)
        slice_z['transparency'] = 0.9
        draw_array(slice_z, self.target)

We can wrap an array in draw_slice() to make it easy to construct pictures of slices:

draw_slice(a)[:,:,1]

slice-z

We can be fancier if we like too, drawing the results of a filter operation:,

draw_slice(a)[a['name'] <= 1]
filter

If you are interested, the full code for creating these figures is here: https://gist.github.com/rjpower/7249729<. All you need is matplotlib and numpy.


Viewing all articles
Browse latest Browse all 19

Trending Articles